Composable Text Controls in Latent Space with ODEs

The Chinese University of Hong Kong, Shenzhen &

Mohamed Bin Zayed University of Artificial Intelligence

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen Guangyi Liu

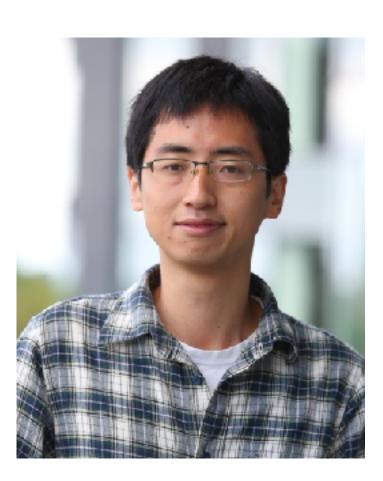
香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Composable Text Controls in Latent Space with ODEs

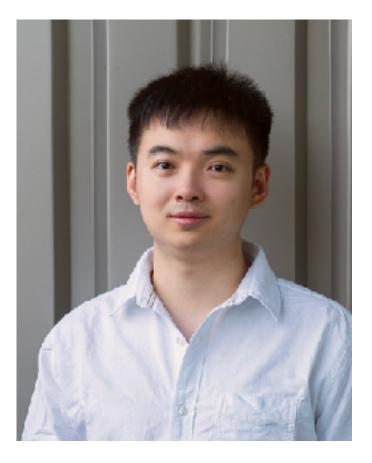
Guangyi Liu

Zeyu Feng

Yuan Gao



Zichao Yang



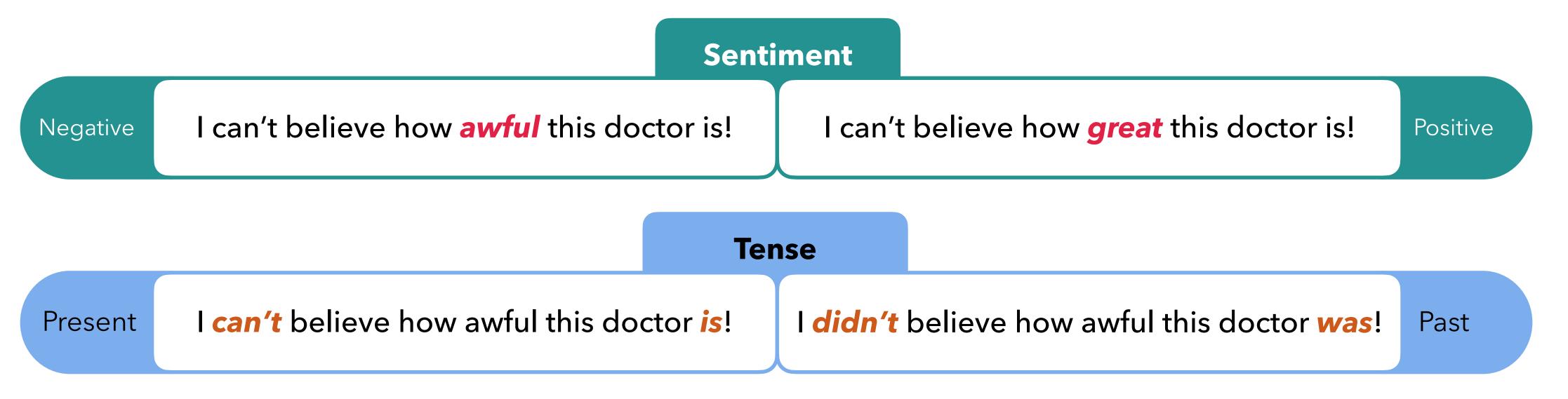
Zhiting Hu

- Problem Statement
- Background
- Method
 - Composable Latent-Space EBMs
 - Efficient Sampling with ODEs
 - Adapting Pretrained LMs for Latent Space
 - Implementation details
- Experiments
- Summary

Outline

Problem I

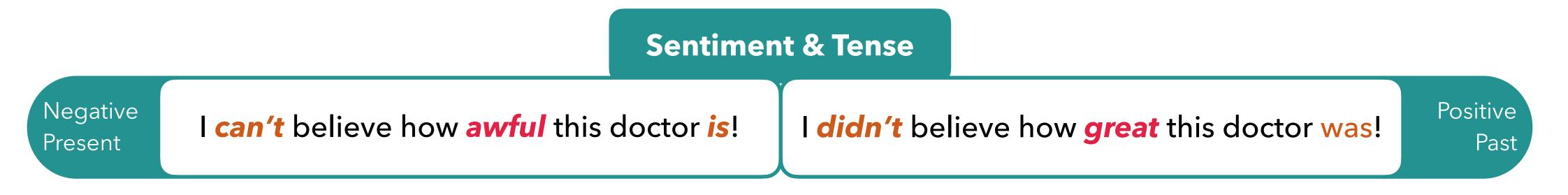
- Text Editing (e.g., Text Style Transfer)
 - Goal: edit the attribute of a given text and keep the content preserved.



- Plenty of works that can achieve very good performance on this specific task. \bullet
 - Adopt content loss, attribute loss and so on.

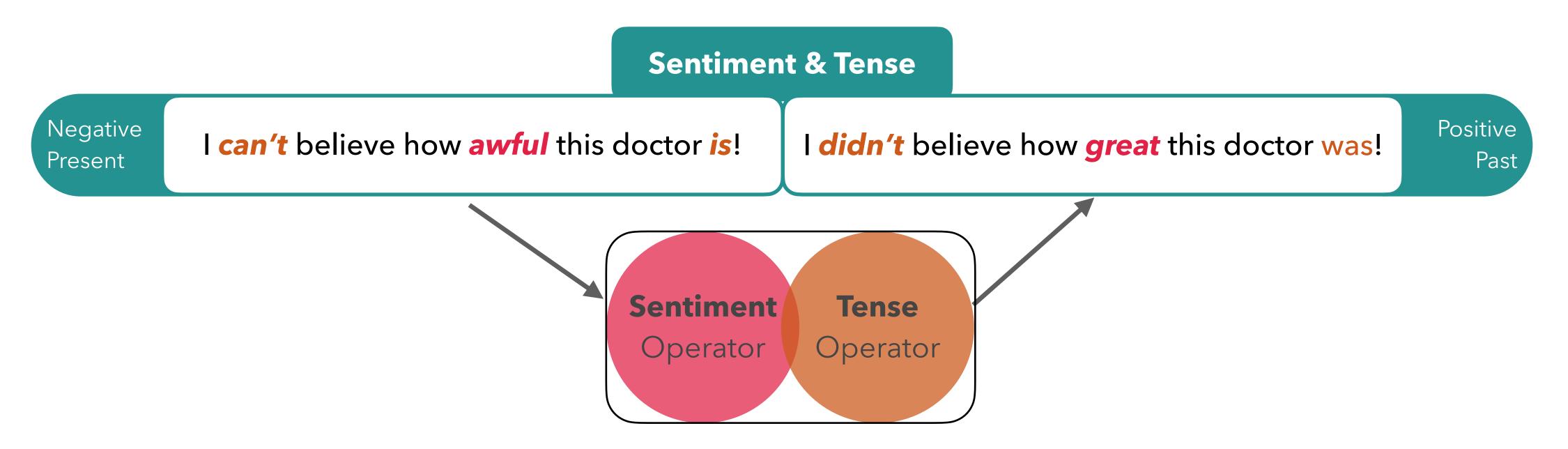
Problem I

- Text Editing with Compositional Attributes
 - Example: Compose sentiment and tense:



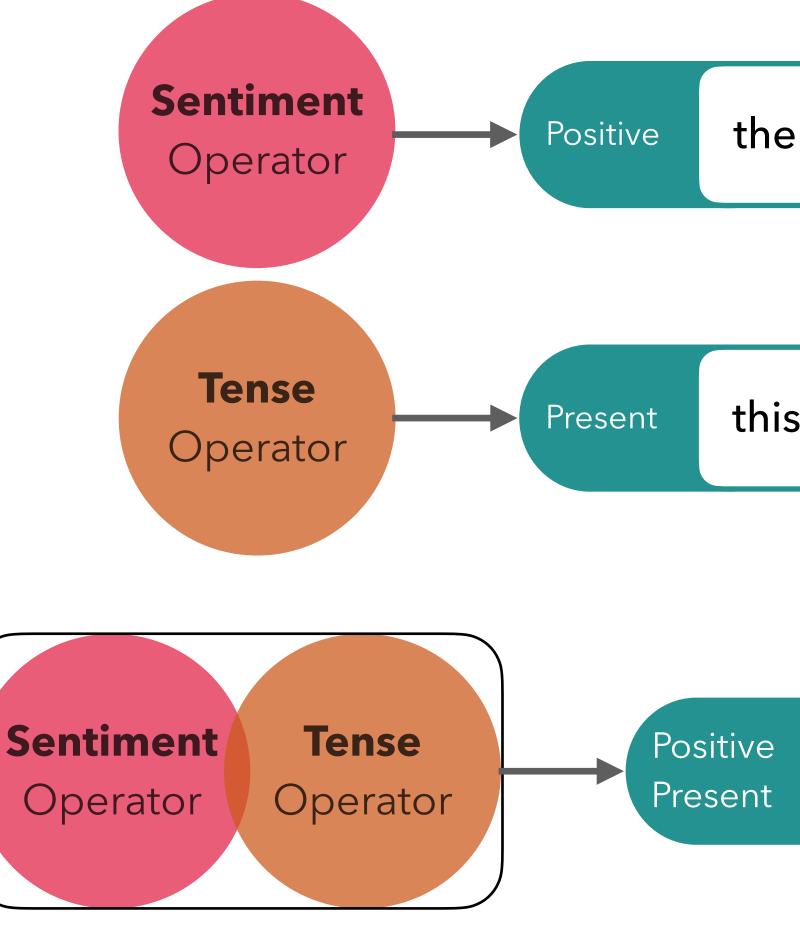
Problem I

- Text Editing with Compositional Attributes
 - Example: Compose sentiment and tense:



• Ideally solution: for each attribute, we have the corresponding **operator**, and these operators can be freely combined. 6

- Conditional Generation with Compositional Attributes
 - Goal: generate fluent and diverse texts with desired attributes.



Problem II

the food is **always unique** with **well spiced** .

this *is* best korean food on this side of town !

The food here *is always tasty*, and *worth* the *price*!

Problem II

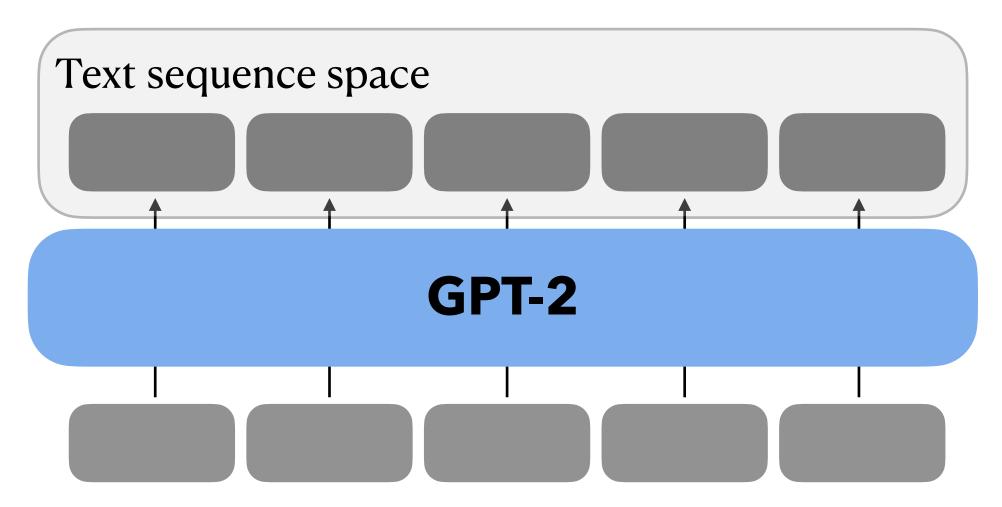
- Conditional Generation with Compositional Attributes
 - Goal: generate fluent and diverse texts with desired attributes.

 - **Diversity** and **accuracy** are still a problem. \bullet
 - Operate in the complex **text sequence space** -> **inefficient** generation
 - Lack of diversity:
 - 1. great location.
 - 2. great.
 - 3. great place for lunch or a date.
 - 4. great place!
 - 5. great food.

[1]Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." *ICLR 2020*

[2]Yang, Kevin, and Dan Klein. "FUDGE: Controlled text generation with future discriminators." NAACL 2021

• Some prior works (PLM-based, like **PPLM**[1] and **FUDGE**[2]), can guarantee the fluency.



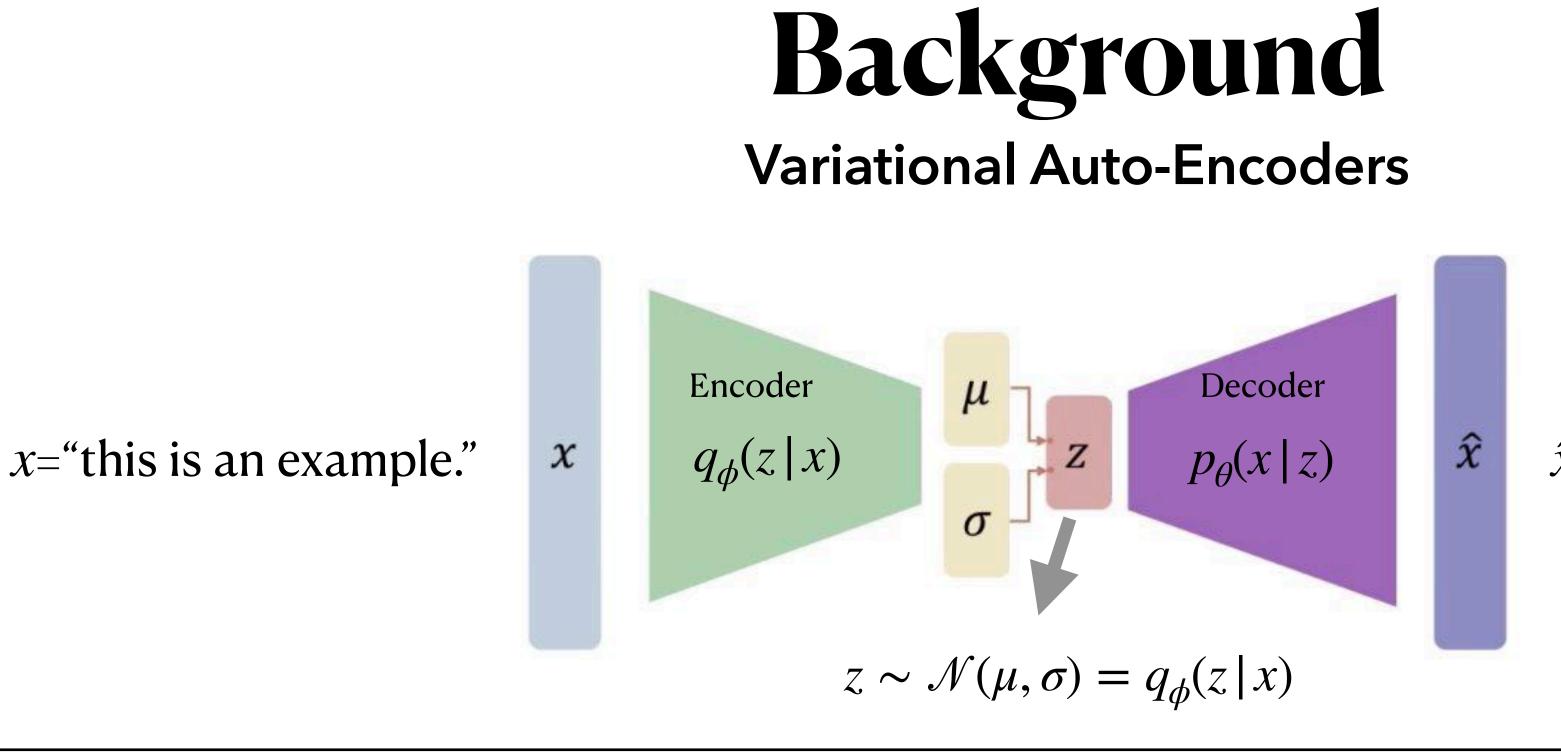
- What we want: ullet
 - Good Fluency 1.
 - Good **Diversity** 2.
 - **Efficient** Generation 3.
 - 4. Compositionality

Solutions

- Possible solutions: ullet
 - PLMs, like **GPT-2** 1.
 - Strong Generative Models, like VAEs, GANs, DPM 2.
 - Operate in Low-Dimensional Latent Space 3.
 - Energy-Based Models are flexible to compose 4.

Outline

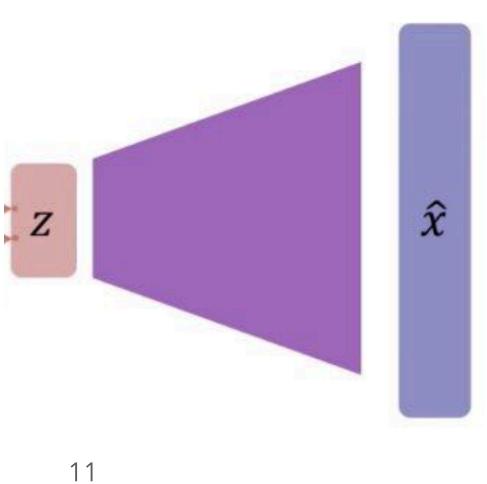
- Problem Statement
- Background
- Method
 - Composable Latent-Space EBMs
 - Efficient Sampling with ODEs
 - Adapting Pretrained LMs for Latent Space
 - Implementation details
- Experiments
- Summary



$$z \sim \mathcal{N}(0,I) = p_{\text{prior}}(z)$$

Figure from: https://towardsdatascience.com/reparameterization-trick-126062cfd3c3

\hat{x} ="this is an example."



Background Energy-Based Generative Models

- Given an arbitrary energy function $E(x) : \mathbb{R}^d \to \mathbb{R}$, energy-based models (EBMs) define a distribution:
- where $Z = \sum_{x \in \mathcal{X}} e^{-E(x)}$ is the normalization term. EBMs are flexible to incorporate any functions or constraints into the energy function E(x).

[3] Song et al. "Score-based generative modeling through stochastic differential equations". *ICLR 2021*.

 $p(\boldsymbol{x}) = e^{-E(\boldsymbol{x})}/Z,$

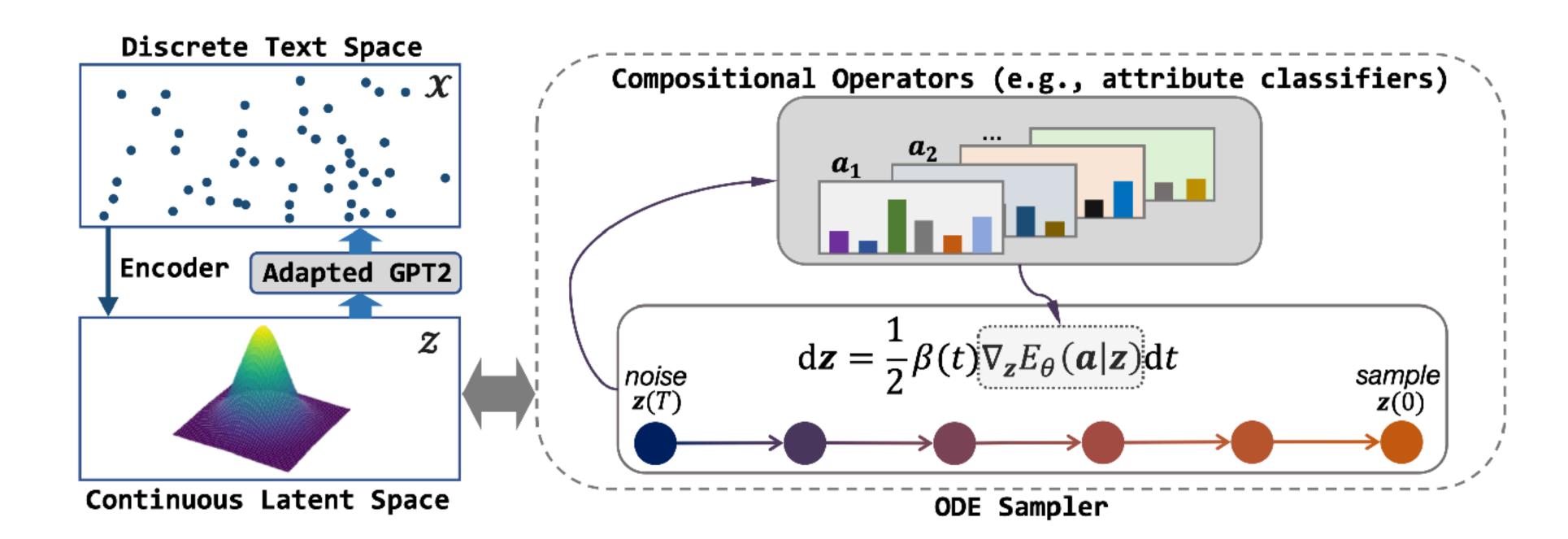
Background Sampling from EBMs

- Langevin Dynamics is gradient-based MCMC approach
 - Sensitive to hyperparameters and unrobust in practice. $x_0 \sim p_0(x), \quad x_{t+1} = x_t - \frac{\eta}{2} \nabla_x E_{\theta}(x_t) + \epsilon_t, \quad \epsilon_t \sim N(0, \eta I)$ Stochastic Differential Equations [3] (SDEs):
- Stochastic Differential Equations [3] (SDEs): $d\boldsymbol{x} = -\frac{1}{2}\beta(t)[\boldsymbol{x} + 2\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})]dt + \sqrt{\beta(t)}d\boldsymbol{\bar{w}},$
- Ordinary Differential Equations (ODEs): $d\boldsymbol{x} = -\frac{1}{2}\beta(t)[\boldsymbol{x} + \nabla_x \log p_t(\boldsymbol{x})]dt.$

[3] Song et al. "Score-based generative modeling through stochastic differential equations". *ICLR 2021*.

- Problem Statement
- Background
- Method
 - Composable Latent-Space EBMs
 - Efficient Sampling with ODEs
 - Adapting Pretrained LMs for Latent Space
 - Implementation details
- Experiments
- Summary

Outline



Variational Auto-encoder based on PLMs

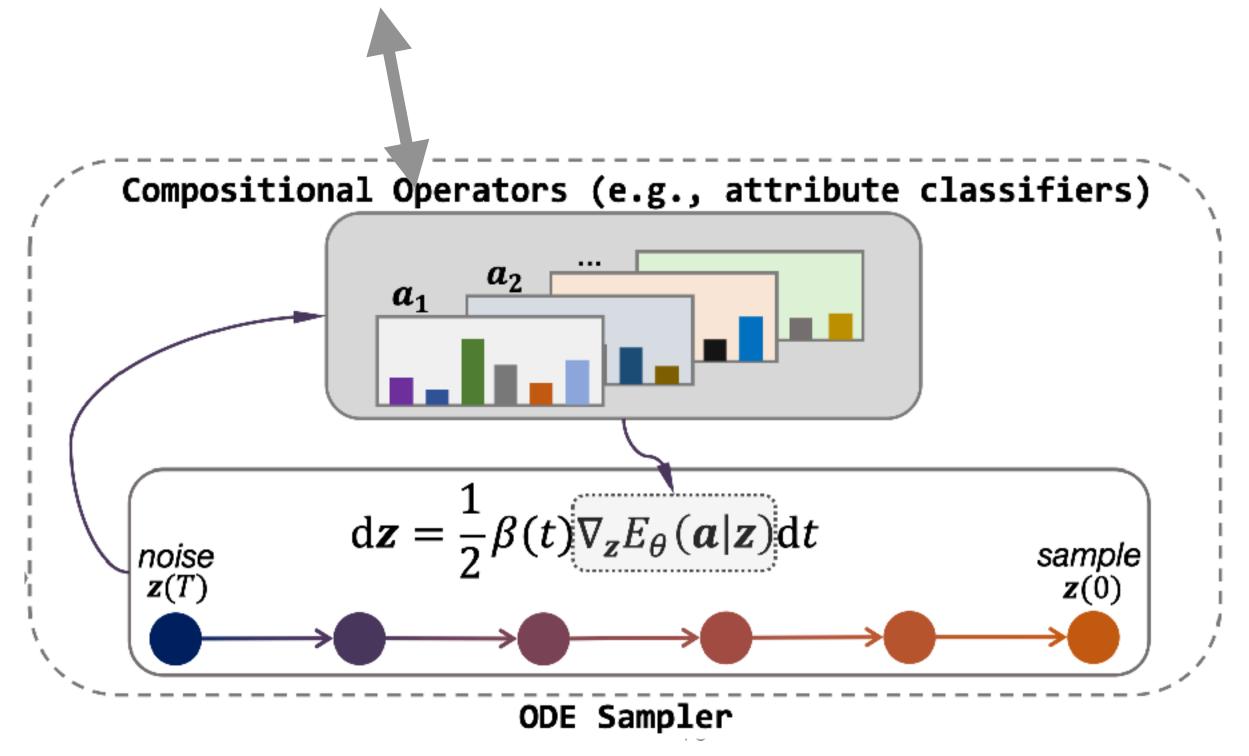
Overview LatentOps

Energy-based Model on the latent space

Composable Latent-Space EBMs

- Goal: Formulate a latent-space EBM s.t. one can easily plug in arbitrary attribute operators. •
- For Categorical Attribute: to justify whether the desired attributes are in the latent vector

- Use attribute classifier $f_i(\mathbf{z})$ for attribute a_i



Composable Latent-Space EBMs

- Sample z that contains desired attributes a
- Joint distribution: $p(\boldsymbol{z}, \boldsymbol{a}) := p_{\text{prior}}(\boldsymbol{z})p(\boldsymbol{a})$
- Properties:
 - 1.
 - 2.
- classifiers have outputs at the same scale for combination

$$E_i(a_i|\boldsymbol{z}) = -f_i(\boldsymbol{z})[a_i] + \log \sum_{a'_i} \exp(f_i(\boldsymbol{z})[a'_i]).$$

$$\boldsymbol{z}) = p_{\text{prior}}(\boldsymbol{z}) \cdot e^{-E(\boldsymbol{a}|\boldsymbol{z})}/Z$$

Marginal over $\mathbf{z} = \mathbf{the VAE \ prior}$, i.e., $\sum_{a} p(\mathbf{z}, \mathbf{a}) = p_{\text{prior}}(\mathbf{z}) \rightarrow \text{high quality text.}$

The energy function enables the combination of arbitrary attributes $E(a|z) = \sum_i \lambda_i E_i(a_i|z)$

• E_i is defined as the negative log probability of a_i to make sure the different attribute

Efficient Sampling with ODEs Sample from $p(\mathbf{z}, \mathbf{a})$

- Draw samples from $p(\mathbf{z}, \mathbf{a})$
 - Ordinary Differential Equations (ODEs):

$$d\boldsymbol{z} = -\frac{1}{2}\beta(t)[\boldsymbol{z} + \nabla_{\boldsymbol{z}}\log p_t(\boldsymbol{z}, \boldsymbol{a})]dt$$
$$= -\frac{1}{2}\beta(t)[\boldsymbol{z} + \nabla_{\boldsymbol{z}}\log p_t(\boldsymbol{a}|\boldsymbol{z}) + \nabla_{\boldsymbol{z}}\log p_t(\boldsymbol{z})]dt.$$

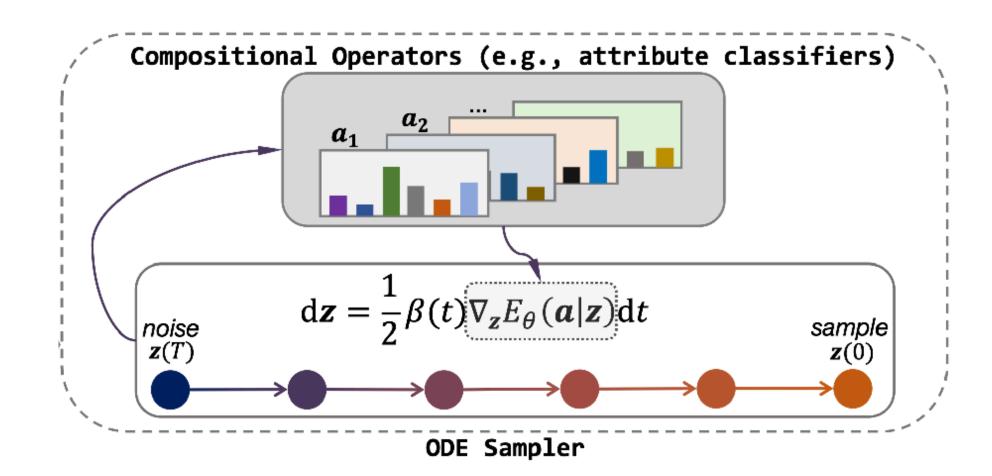
- $p_0(\mathbf{z}) = p_T(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I}) \longrightarrow p_t(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ is time-invariant.

$$egin{aligned} \mathrm{d}oldsymbol{z} &= -rac{1}{2}eta(t)[oldsymbol{z} -
abla_{oldsymbol{z}}E(oldsymbol{a}|oldsymbol{z}) - rac{1}{2}
abla_{oldsymbol{z}}||oldsymbol{z}||_{2}^{2}]\mathrm{d}t \ &= rac{1}{2}eta(t)\sum_{i=1}^{n}
abla_{oldsymbol{z}}E(a_{i}|oldsymbol{z})\mathrm{d}t. \end{aligned}$$

• Classifiers f_i are fixed, and z is from time-invariant distribution $-> p_t(\mathbf{a} | \mathbf{z}) = p(\mathbf{a} | \mathbf{z})$ is **time-invariant**

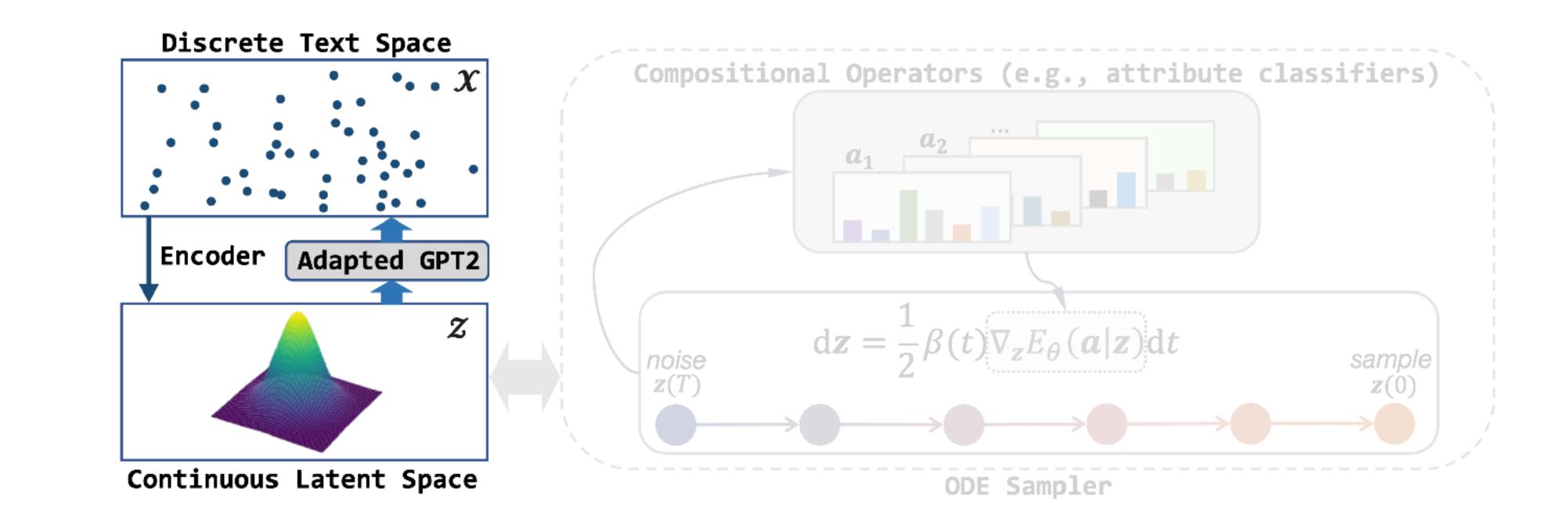
Composable Latent-Space EBMs & Efficient Sampling with ODEs

- Given a text latent space, all we need: •
 - Train the attribute classifiers $f_i(\cdot)$ for a_i
 - Sample from $p(\mathbf{z}, \mathbf{a})$ by solve the ODE. \bullet
 - Different classifiers can be freely combined.



Summary

Latent Model VAE

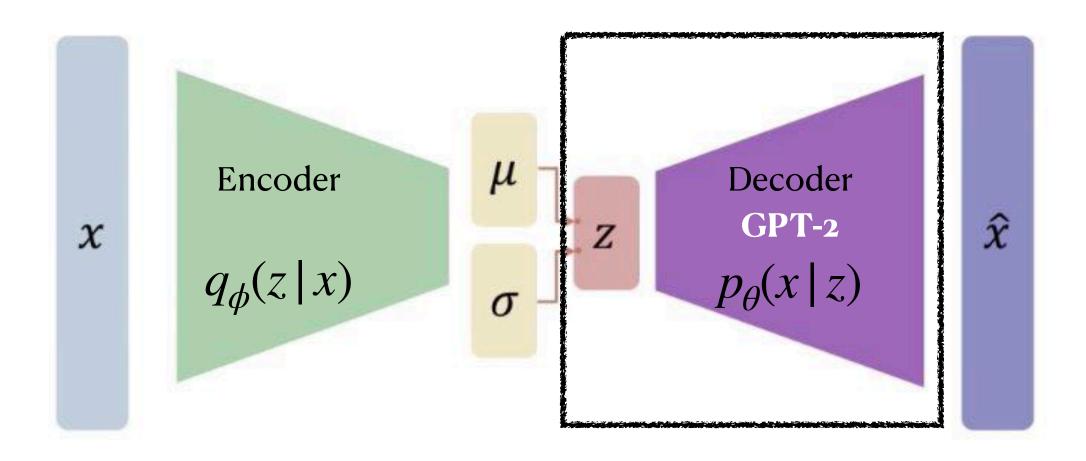


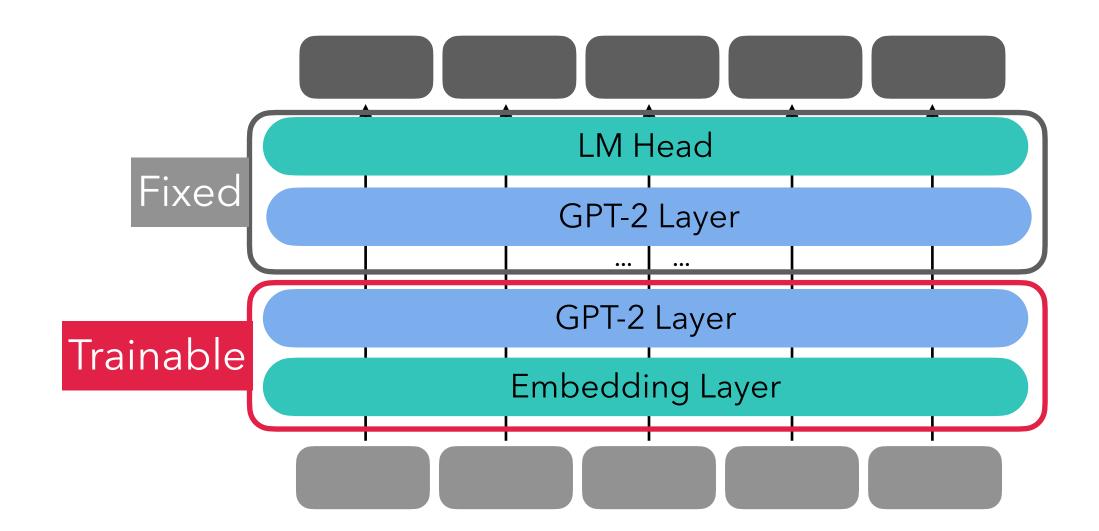
Adapting Pretrained LMs for Latent Space Variational Auto-Encoder

Decoder:

Equip PLMs (e.g., GPT-2) with the latent space through **parameter-efficient adaptation**.

- Update *a small portion* of the LM parameters ullet
- Keep the LM's ability to generate fluent and coherent text
- Adopt simple MLP layers that pass the latent vector to the LM (Embedding and Attention) \bullet



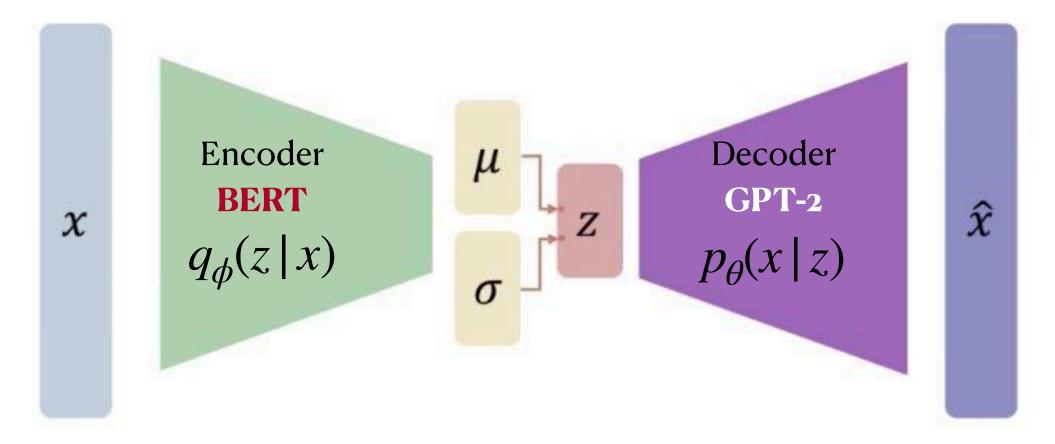


Adapting Pretrained LMs for Latent Space Variational Auto-Encoder

Encoder:

We use a BERT-small, and fine-tune it in the VAE framework.

The tuned encoder can be used to produce the initial z values in the ODE sampler for text editing.



Implementation Details How to acquire attribute classifiers

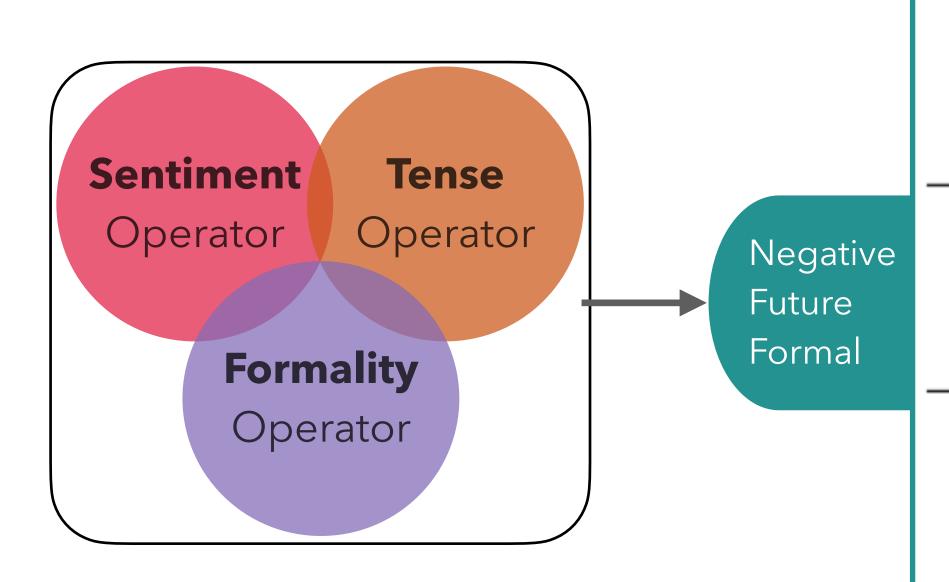
- Train attribute classifiers on the frozen latent space.
- Map text x into latent space -> training pairs (z, a)
- Since the classifier is built on the semantic latent space, it can be trained efficiently with only a small number of examples (e.g., 200 per class)
 - Don't require large amount of labeled data

Implementation Details Initialization of ODE sampling

- For generating new text: Initialize $\mathbf{z}(T) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- For text editing:
 - The main content should be preserved.
 - Initialize $\mathbf{z}(T) \sim q_{\phi}(\mathbf{z} | \mathbf{x})$ (the latent vector of the given text by encoder)
 - z(0) preserves content and obtains desired attributes well.

Outline

- Problem Statement
- Background
- Method
 - Composable Latent-Space EBMs
 - Efficient Sampling with ODEs
 - Adapting Pretrained LMs for Latent Space
 - Implementation details
- Experiments
- Summary



Experiments

Generation with Compositional Attributes

Negative	+	Future	+	Formal
----------	---	--------	---	--------

GPT2-FT:

i will not be back.
would not recommend this location to anyone. [No Subject]
would not recommend them for any jewelry or service. [No Subject]
if i could give this place zero stars, i would.

PPLM:

i could not recommend them at all.
i could not believe this was not good!
this was a big deal, because the food was great.
i could not recommend them.

FUDGE:

not a great pizza to get a great pie! [No Tense] however, this place is pretty good. i have never seen anything like these. will definitely return. [No Subject]

Ours:

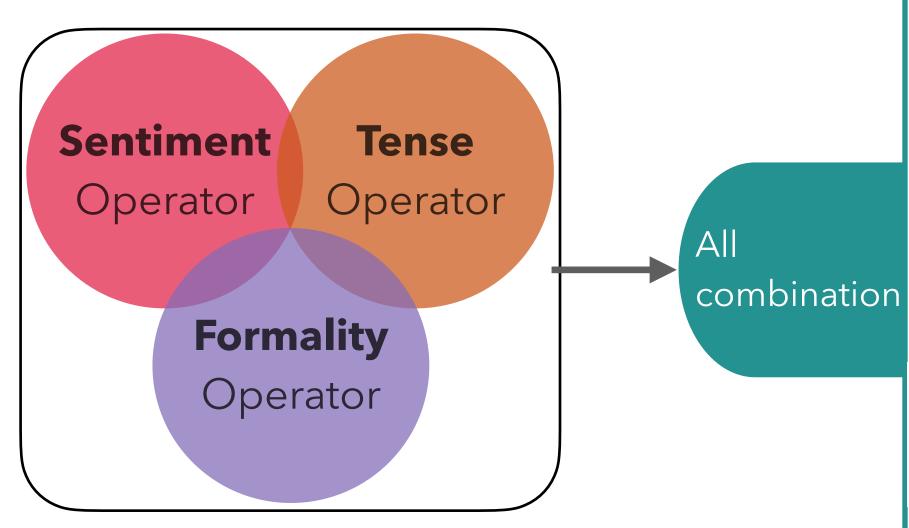
i would not believe them to stay .

i will never be back .

i would not recommend her to anyone in the network .

they will not think to contact me for any reason.

Experiments **Generation with Compositional Attributes**

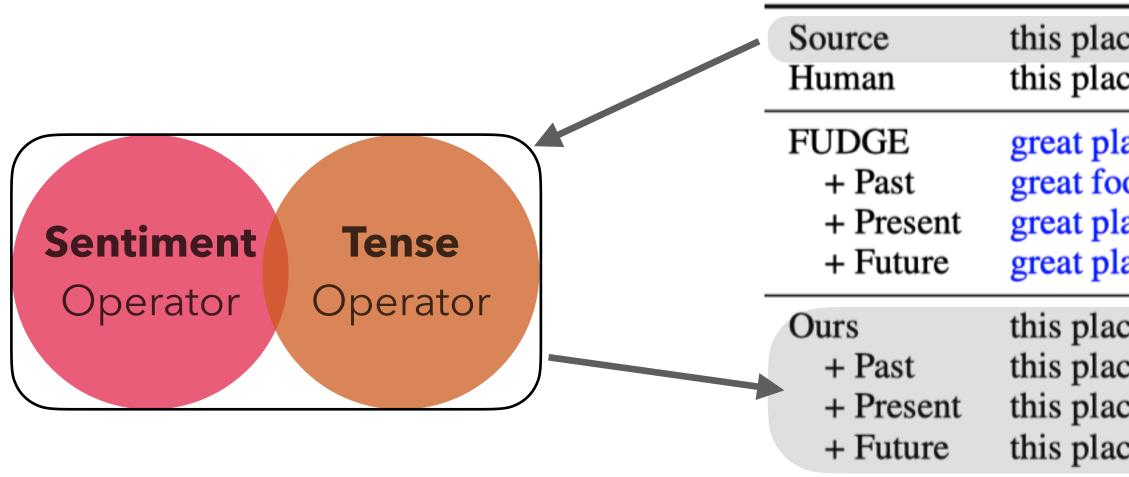


A	N 4 1		Accu	ıracy↑		Fluency↓	Diversity↓
Attributes	Methods	S	Т	F	G-M	PPL	self-BLEU
	GPT2-FT	0.98	-	-	0.98	10.6	23.8
Sentiment	FUDGE	0.86 0.77	-	-	0.86 0.77	11.8 10.3	31.0 27.2
	Ours	0.99	-	-	0.99	30.4	13.0
Sentiment	GPT2-FT	0.98	0.95	-	0.969	9.0	36.8
+Tense	PPLM FUDGE	0.81 0.67	0.59 0.63	-	0.677 0.565	15.7 11.0	28.7 35.9
	Ours	0.98	0.93	-	0.951	25.2	19.7
Sentiment	GPT2-FT	0.97	0.92	0.87	0.919	10.3	36.8
+Tense +Formality		0.82 0.67	0.57 0.64	0.56 0.62	0.598 0.556	17.5 11.5	30.5 35.9
	Ours	0.97	0.92	0.93	0.937	25.8	21.1

Time for generating 150 samples

Methods	PPLM	FUDGE	Ours
Time (s)	3182 (578×)	36.1 (6.6×)	5.5 (1×)

Examples Text Editing with Compositional Attributes



this place is a terrible place to live !
this place is a great place to live !
great place to live!
great food and terrible service! [No Tense]
great place to live! [No Tense]
great place to live! [No Tense]
this place is a great place to live !
this place was a great place to live !
this place is a great place to live !
this place is a great place to live !
this place is a great place to live !

Experiments **Text Editing**

Methods	Accuracy↑		Content	t†	Fluency↓	#Params	#Data
100000	Sentiment	iBL	rBL	CTC	PPL	ni urums	"D'ulu
Source	0.27	100	31.4	0.500	15.9	-	-
Human B-GST	0.82	31.9 31.8	100 16.3	0.463	24.5 39.5	- 111M	-
STrans DiRR	0.91 0.96	53.2 61.5	$\frac{24.5}{29.8}$	0.469 0.480	41.0 <u>23.9</u>	17M 1.5B	Full-data
T&G FGST	0.88 0.90	47.6 13.2	21.8 7.6	0.466 0.450	24.3 9.3	63M 26M	
FUDGE Ours	0.40 0.95	<u>57.0</u> 54.0	18.0 24.3	0.456 0.474	39.3 25.9	16.4M 3.7K	Few-shot
Source Human	0.14 0.52	100 49.7	49.4 1 0 0	0.425 0.422	26.4 47.2	-	-
B-GST DiRR T&G FGST	0.62 0.60 0.65 0.83	52.3 <u>68.7</u> 68.6 21.9	28.5 38.2 <u>35.4</u> 14.0	0.425 0.424 0.423 0.427	27.7 32.5 40.9 13.6	111M 1.5B 63M 26M	Full-data
FUDGE Ours	0.20 <u>0.72</u>	70.5 53.3	35.1 28.1	0.415 0.423	49.5 4 4.1	16.4M 3.7K	Few-shot

Summary LatentOps

- A new efficient approach that performs continuous latent space of text.
- Permits plugging in arbitrary operators to form an energy-based distribution on the lowdimensional latent space.
- We develop an efficient sampler based on **ODEs** to draw latent vector samples that **bear the desired attributes**.
- We connect the latent space to pretrained LMs (e.g., GPT-2) by efficiently **adapting a small subset of the LM parameters** in a variational auto-encoding (VAE) manner.

• A new efficient approach that performs composable control operations in the compact

Some Observations

- The demand of capacity of VAE encoder is not great.
- The generation quality mainly depends on the decoder capacity.
- VAE is not a perfect choice as the latent model.
 - Tradeoff between reconstruction and generation
 - Gap between posterior and prior.

Discussions and collaborations are welcome!

Contact me:

guangyiliu@link.cuhk.edu.cn

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Thanks!

Our Group @UCSD:

http://zhiting.ucsd.edu/

UC San Diego